Axonal ion channel dysfunction in c9orf72 familial amyotrophic lateral sclerosis.
نویسندگان
چکیده
IMPORTANCE Abnormalities of axonal excitability characterized by upregulation of persistent sodium (Na+) conductances and reduced potassium (K+) currents have been reported in sporadic amyotrophic lateral sclerosis (SALS) phenotypes and linked to the development of clinical features such as fasciculations and neurodegeneration. OBJECTIVE To investigate whether abnormalities of axonal ion channel function, particularly upregulation of persistent Na+ conductances and reduced K+ currents, form the pathophysiological basis of chromosome 9 open reading frame 72 (c9orf72) familial amyotrophic lateral sclerosis (FALS). DESIGN, SETTING, AND PARTICIPANTS This was a prospective study. Clinical and functional assessment, along with motor-nerve excitability studies, were undertaken in 10 clinically affected patients with c9orf72 FALS, 9 asymptomatic c9orf72 mutation carriers, and 21 patients with SALS from 3 hospitals and 2 outpatient clinics. MAIN OUTCOMES AND MEASURES Axonal excitability variables were measured in patients with c9orf72 ALS and results compared with matched patients with SALS and healthy control participants. RESULTS Strength-duration time constant (τSD) was significantly increased in the patients with c9orf72 FALS and those with SALS (mean [SD], c9orf72 FALS: 0.50 [0.02] milliseconds; SALS: 0.52 [0.02] milliseconds; P < .01) when compared with control participants (mean [SD], 0.44 [0.01] milliseconds). In contrast, there were no significant changes of τSD in asymptomatic c9orf72 mutation carriers (P = .42). An accompanying increase in depolarizing threshold electrotonus at 90 to 100 milliseconds (TEd 90-100 milliseconds) was also evident in the c9orf72 FALS (P < .05) and SALS (P < .01) cohorts. Mathematical modeling suggested that an increase in persistent Na+ conductances, along with reduced K+ currents, best explained the changes in axonal excitability. Importantly, these abnormalities in axonal excitability correlated with the motor amplitude (τSD: R = -0.38, P < .05 and TEd 90-100 milliseconds: R = -0.44, P < .01), muscle weakness (TEd 90-100 milliseconds: R = -0.32, P < .05), and the ALS Functional Rating Scale (TEd 90-100 milliseconds: R = -0.34, P < .05). CONCLUSIONS AND RELEVANCE Findings from the present study establish that upregulation of persistent Na+ conductances and reduced K+ currents were evident in both c9orf72 FALS and SALS cohorts, and these changes in axonal excitability were associated with motor neuron degeneration.
منابع مشابه
An Iranian familial amyotrophic lateral sclerosis pedigree with p.Val48Phe causing mutation in SOD1: a genetic and clinical report
Objective(s): Amyotrophic lateral sclerosis (ALS), a fatal progressive neurodegenerative disorder, is the most common motor neuron disease in European populations. Approximately 10% of ALS cases are familial (FALS) and the other patients are considered as sporadic ALS (SALS). Among many ALS causing genes that have been identified, mutations in SOD1 and C9orf72 are the most common genetic causes...
متن کاملClinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ~40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical d...
متن کاملClinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72.
Intronic expansion of the GGGGCC hexanucleotide repeat within the C9ORF72 gene causes frontotemporal dementia and amyotrophic lateral sclerosis/motor neuron disease in both familial and sporadic cases. Initial reports indicate that this variant within the frontotemporal dementia/amyotrophic lateral sclerosis spectrum is associated with transactive response DNA binding protein (TDP-43) proteinop...
متن کاملHuman iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which a greater understanding of early disease mechanisms is needed to reveal novel therapeutic targets. We report the use of human induced pluripotent stem cell (iPSC)-derived motoneurons (MNs) to study the pathophysiology of ALS. We demonstrate that MNs derived from iPSCs obtained from healthy individuals or pa...
متن کاملC9orf72 Hexanucleotide Expansions Are Associated with Altered Endoplasmic Reticulum Calcium Homeostasis and Stress Granule Formation in Induced Pluripotent Stem Cell‐Derived Neurons from Patients with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
An expanded hexanucleotide repeat in a noncoding region of the C9orf72 gene is a major cause of amyotrophic lateral sclerosis (ALS), accounting for up to 40% of familial cases and 7% of sporadic ALS in European populations. We have generated induced pluripotent stem cells (iPSCs) from fibroblasts of patients carrying C9orf72 hexanucleotide expansions, differentiated these to functional motor an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JAMA neurology
دوره 72 1 شماره
صفحات -
تاریخ انتشار 2015